SOLAR DESIGN PRINCIPLES

SOLAR ACCESS TO SINGLE FAMILY DWELLINGS SUMMER SOLAR DESIGN DESIGN/LOCATE EXTERNAL SHADING AND WINDOWS TO MINIMISE HEAT GAIN DURING SUMMER MONTHS WINTER SOLAR DESIGN WEST ANGLE OF OVERHANG ALLOWS WINTER SUN IN, INCREASING NATURAL LIGHT AND SOLAR HEATING. SUMMER SHADING SUN WELL INSULATED THERMAL MASS • • •

• EXPOSED THERMAL MASS CAN CAN REGULATE INTERNAL TEMPERATURES BY RELEASING STORED HEAT DURING NIGHT IN WINTER AND ABSORBING WARM AIR IN SUMMER

2

SOLAR ACCESS TO COURTYARDS & APARTMENTS

- MAINTAIN SUFFICIENT LIGHT TO INTERNAL APARTMENT 'COURTYARDS' BY ALLOWING SUFFICIENT SPACE BETWEEN BUILDINGS.
- SITE SLOPES FROM SOUTH WEST TO NORTH EAST. ENSURE BUILDINGS AT HIGHER TOPOGRAPHIES DO NOT OVERSHADOW BUILDINGS AT LOWER LEVELS.
- DAYLIGHT MODELING CAN ENSURE SUFFICIENT LEVELS OF NATURAL LIGHT ARE MAINTAINED IN ALL APARTMENTS AND FAMILY DWELLINGS.

- HOUSE LAYOUT FOR SOLAR DESIGN
- ORIENTATE DWELLINGS ON EAST-WEST AXIS
- MAXIMISE SOUTH FACING FACADE
- ENSURE THE MAJORITY OF HABITABLE ROOMS ARE TO SOUTH
- BEDROOMS FACE EAST WHILST EVENING ROOMS FACE WEST

SOLAR DESIGN STUDY

ENERGY STRATEGY - HEAT NETWORK

1 OVERVIEW

A HEAT NETWORK WOULD PROVIDE HOT WATER FOR BOTH SPACE AND WATER HEATING TO EACH DWELLING.

THE ADJOINING IMAGE SHOWS AN INDICATIVE ROUTE FOR AN **ON-SITE HEAT NETWORK.**

SHOWN ARE FLOW AND RETURN PIPES TO AND FROM AND INDICATIVE ENERGY CENTRE LOCATION.

A HEAT NETWORK OFFERS SIGNIFICANT CO2 SAVINGS OVER INDIVIDUAL GAS-FIRED BOILERS.

IF AN ASSET IS TO BE RETAINED IN OWNERSHIP, MAINTENANCE OF A HEAT NETWORK OFFERS SIGNIFICANT ADVANTAGES OVER INDIVIDUAL BOILERS/HEAT PUMPS AS THERE IS ONE GENERATION SOURCE.

SYSTEM IN DWELLINGS 3

EACH DWELLING WOULD BE PROVIDED WITH A HYDRAULIC INTERFACE UNIT (HIU) WHICH WOULD INTERFACE WITH THE DISTRICT HEATING PIPEWORK.

LARGER DWELLINGS WOULD BE PROVIDED WITH A TYPICAL HOT WATER STORAGE TANK TO ENSURE CONTINUITY OF SUPPLY.

INDICATIVE HEAT NETWORK LAYOUT

TYPICAL ENERGY CENTRE SECTION

TYPICAL SCHEMATIC AND HIU

2 HEAT GENERATION

THERE ARE TWO PRIMARY OPTIONS FOR HEAT GENERATION IN AN ON-SITE ENERGY CENTRE;

A) COMBINED HEAT & POWER BIOMASS B)

INDICATIVE CHP ENERGY CENTRE LAYOUT

INDICATIVE BIOMASS ENERGY CENTRE LAYOUT

ENERGY STRATEGY - INDIVIDUAL HEATING SYSTEMS

1 OVERVIEW

INDIVIDUAL HEATING SYSTEMS WOULD BE PROVIDED TO EACH DWELLING OR GROUP OF DWELLINGS.

THERE ARE TWO PRIMARY OPTIONS FOR THESE TYPE OF SYSTEMS:

HEAT PUMPS A)

HEAT PUMPS WOULD PROVIDE SPACE AND WATER HEATING TO EACH DWELLING. HEAT PUMPS OFFER SIGNIFICANT ENERGY EFFICIENCY AS FOR EACH KW OF ELECTRICITY CONSUMED IN EXCESS OF 3kW OF HEATING WILL BE EXTRACTED. WITH THE CONTINUING DECARBONISATION OF THE NATIONAL GRID, HEAT PUMPS HAVE THE POTENTIAL TO OFFER SIGNIFICANT CO2 SAVINGS. CONSIDERATION WOULD HAVE TO BE GIVEN TO THE LOCATION OF EXTERNAL CONDENSERS AND THE MITIGATION MEASURES REQUIRED FOR THE NOISE EMISSION.

B) **GAS-FIRED BOILERS**

GAS FIRED BOILERS OFFER THE MOST CONVENTIONAL FORM OF HEATING IN THE UK. AND ALTHOUGH NOT AS EFFICIENT AS HEAT PUMPS, THEY CAN OFFER HIGH EFFICIENCIES WHEN COMBINED WITH FLUE-GAS HEAT RECOVERY SYSTEMS. CONSIDERATION WOULD NEED TO BE GIVEN TO BRINGING GAS CONNECTIONS TO EACH DWELLING.

INDICATIVE LOCATION OF HEAT PUMP CONDENSERS

TYPICAL KIT 3

TYPICAL EXTERNAL CONDENSER WITH ACOUSTIC LOUVRES

TYPICAL HEAT PUMP ARRANGEMENT (INTERNAL)

TYPICAL HEAT PUMP SCHEMATIC

ENERGY STRATEGY - SAP ANALYSIS (TYPICAL DWELLING)

Note: an update to the carbon emissions factors for gas and electricity is proposed and currently in consultation, this dramatically changes the carbon factor for electricity (reduced by 55%) and as such would make a significant difference to the results below. It is likely that ASHP would show approximately 10% additional improvement and that gas-fired CHP led emissions would become far less viable.

			Total Unit				97		KPIs				
<u>Option</u>		<u>Strategy</u>	<u>Floor Area</u> (m²)	<u>TER</u>	<u>DER</u>	<u>Total CO2</u> (kg.CO2.yr)	Ze Improvement Over Baseline	<u>EPC</u>	<u>Building Regs</u> <u>Compliance</u>	20% reduction through <u>renewables</u> (CS15)	Best Practice (35% improvement)	<u>Net Zero</u> Carbon (100% improvement)	N
1	Baseline - Part L Compliant Builidng		92.82	19.52	19.41	1,801.64	0.56%	B 83	*	х	x	×	All inputs in line compliant dwelli - Higher than ave - Gas-fired boiler - Low Air Permea
2	Enhanced Constructions - Part L compliant		92.82	19.52	17.14	1,590.93	12.19%	B 85	~	x	x	×	Enhanced Part L with Accredited (applied.
3	Enhanced Constructions - With District Heating		92.82	19.52	13.22	1,227.29	32.26%	B 85	~	~	x	×	Enhanced Constr presented above CHP-led district h
4	Enhanced Constructions - With Electric led ASHP		92.82	19.52	17.12	1,589.08	12.30%	B 85	~	x	x	×	Enhanced Constr presented above ASHP for heating generation - no f
5	As option 4 - with whole roof solar PV on SW facing roof		92.82	19.52	8.09	750.91	58.56%	A 94	~	V	*	×	Enhanced Constr presented above ASHP + 12.8sqm whole roof solar facing)
6	District Heating - with whole roof solar PV on SW facing roof	+	92.82	19.52	5.06	469.57	74.08%	A 93	~	✓	~	x	Enhanced + Distr 12.8sqm (1.96kV solar PV (south v
7	As option 5 - with PV to get to 'Zero Carbon'		92.82	19.52	0.00	-	100.00%	A 102	~	~	4	~	Strategy as prese with electric led kWp) of whole ro west facing) to g

When determining the baseline (TER) for each solution, it was assumed that the heating would be provided by gas boilers, in line with national best practice methodology. This leads to a consistent Target Emission Rate (TER) for each solution allowing for a 'like for like' comparison.

Please note that for the electric heat pump solution, in Part L and SAP, the TER is significantly higher as it reflects the higher fuel factor for electricity, ultimately it will be possible to demonstrate greater savings against Building Regulations than is shown in the note. The 'Total CO_2 ' column would not change in this instance - which reflects actual CO_2 emissions.

<u>Votes</u>
with a Part L ing, including; erage U-Values; r solution; ability Solution
Construction Details
ruction scheme as with suitably sized heating
ruction scheme as with electric led g and hot water fossil fuels on site.
ruction scheme as with electric led (1.96kWp) of PV (south west
rict Heating + Wp) of whole roof west facing)
ented in Option 5 ASHP + 20 sqm (3.7 oof solar PV (south get to <i>Zero Carbon</i>

Enhanced Measures	Residential		
External Wall U-Value (W.m²K)	0.11		
Wall to unheated corridor/stairwell U-Value (W.m²K)	0.11		
Exposed Floor U-Value (W.m²K)	0.11		
Roof U-Value (W.m ² K)	0.11		
Window U-Value (W.m²K)	1.1		
Glazing G-Value	0.72		
Lighting	All LED		
Metering and Controls	Provided		

District Heating Specification	Residential Areas
CHP Thermal Efficiency	51.0%
CHP Electrical Efficiency	30.3%
CHP Fraction of Heat Load	0.6
Gas-fired Boilers Efficiency	95.7%
Boiler Fraction of Heat Load	0.4
Metering	Metering linked to usage, variable flow rate
Water Heating	150 litre cylinder, by DH System
Pipework	pre-insulated, low temperature

ASHP Heating Specification	Residential Areas
Space Heating Efficiency	364.4%
Manufacturer	Mitsubishi
Model	ECODAN - PUHZ-SW40VHA
Gas-fired Boilers Efficiency	95.7%
Water Heating	150 litre cylinder, by ASHP system
Pipework	pre-insulated, low temperature, variable flow

PV Specification	Residential Areas
Installed Peak Power	1.96kWp
Apprixmate Area (m ²)	12.80
Tilt	30°
Orientation	South-West
Overshading	None or very little
	PV connected to house
Notes	electrical metering

Accredited Construction Details - assumed every junction is designed and constructed as an 'Approved Detail'